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Abstract--The performance of  fluidized beds is strongly influenced by bubble behavior. Among various 
hydrodynamic properties, bubble size distributions are of  prime concern, but in practice, bubble size is 
not readily measured. When a probe is used to determine bubble size, it intersects a bubble with a chord 
length other than the largest vertical dimension. The relationships between the size distribution of bubbles 
in the bed, the size distribution of  bubbles touching the probe and the distribution of  chord lengths must 
be resolved for correct interpretation of  probe signals. A method for translating statistical parameters, 
namely mean and standard deviation of chord lengths to mean and standard deviation of  bubble sizes, 
and an approach to infer the size distribution of  bubbles touching the probe and the size distribution of  
bubbles in the bed system by using the distribution of  chord lengths measured by a probe in closed form 
are proposed for the first time. 

Key Words: two-phase (fow), bubble, chord length, shape, size distribution, geometric probability, 
gas-liquid(flow), fluidization 

I N T R O D U C T I O N  

Fluidized beds and bubble columns are employed in a number of  industrial processes because these 
beds have advantages, such as high rates of heat and mass transfer, due to effective contact between 
the phases (Epstein 1981). Bubble characteristics strongly influence hydrodynamics of multiphase 
beds and determine the performance of fluidized bed reactors and combustors. Among various 
hydrodynamic properties, bubble sizes and their distributions are of  prime concern, as they are 
directly responsible for the behavior of other hydrodynamic properties such as flow patterns, solids 
mixing, gas-liquid interfacial area and mass transfer between the phases. However, it is very 
difficult to determine the size distribution of bubbles present in a fluidized bed in which bubbles 
rise from a distributor in a swarm and grow in size as they are rising through the bed. Nevertheless, 
bubble sizes can be characterized by chord lengths of bubbles pierced by a probe, which are easily 
measured. Previous work on converting the distribution of chord lengths to the size distribution 
of bubbles in numerical form has demonstrated an instability problem and is cumbersome (Clark 
& Turton 1988). 

This paper discusses the relationships between the size distribution of  bubbles in the bed, the 
size distribution of  bubbles touching the probe and the distribution of measured chord lengths, 
proposes a method for inferring statistical parameters the mean and standard deviation of bubble 
sizes from the mean and standard deviation of chord lengths and provides an approach to infer 
the size distribution of bubbles touching the probe and the size distribution of  bubbles in the bed 
system in analytical form by using the distribution of chord lengths measured by the probe. 

L I T E R A T U R E  R E V I E W  

There is a body of  literature concerned with the relationships between bubble sizes and chord 
lengths in two-phase systems including gas-liquid mixtures and fluid bed bubble and dense phase 
mixtures. Geometrical probability concepts offer an elegant solution to the problem. Werther 
(1974a, b) provided the first analysis of the relationship between the distributions of chord lengths 
and the local bubble sizes. Lim et  al. (1990a, b) used a digital image analysis technique with the 
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aid of  a video camera to obtain chord lengths and several size parameters of  bubbles intersected 
at an " imaginary"  probe in a thin, transparent two-dimensional fluidized bed. However, two- 
dimensional beds are not generally representative of  the hydrodynamics in larger three-dimensional 
beds. Clark & Turton (1988) proposed forward and backward transforms relating chord lengths 
to bubble sizes for a variety of  bubble shapes encountered in different multiphase flows, and Turton 
& Clark (1989) extended this technique to the case of spherical cap bubbles encountered in fluid 
beds with bubble rise velocity depending on bubble size. However, instability was observed with 
the backward transform when a small number of  bubble measurement events was used to infer 
bubble size distributions. Irregular and even negative values of  bubble population in a specific size 
range could result from too many size range bins or too few bubbles. 

There are also several papers analyzing the relationships between average of bubble sizes 
and average of chord lengths. Gunn & AI-Dorri (1985) discussed that relationship for 
ellipsoidal bubbles in gas liquid bed. Chan et al. (1987) and Weimer et al. (1985) also provided 
an approximate relationship between averages of  bubble sizes and chord lengths for spherical 
bubbles. 

Probes are effective tools for the study and measurement of  bubble sizes in a fluidized bed system. 
There are several types of  probes, such as optical, resistance/impedance, capacitance or dual 
hydrostatic pressure probes (Meernik & Yuen 1986a, b; Burgess et al. 1981; Werther & Molerus 
1973; Atkinson & Clark 1986b) that can be used to measure chord lengths of bubbles. General 
reviews of fluidized bed probes were presented by Cheremisinoff (1986) and Atkinson & Clark 
(1986a). In this paper the " imaginary" probe gathering chord length data could work on any one 
of a number of  principles and the basic probe signal processing will not be discussed. 

THEORY 

Consider a swarm of gas bubbles rising in a liquid or dense fluidized medium. A probe is operated 
amidst the bubbles, which are assumed to be uniformly distributed throughout the system for this 
analysis. The size distribution of bubbles in the bed system and the size distribution of bubbles 
touching the problem can be described by the probability functions Ps(R) and Pp(R), respectively. 
They differ because statistically the probe is more likely to intersect a large bubble than a small 
bubble. In measurement, the probe does not always intersect a bubble at its center. A chord length 
smaller than the largest vertical bubble dimension is typically measured. The chord length 
distribution not only is determined by bubble size distributions Pp(R)  or  Ps(R), but also is related 
to bubble shape. 

Bubble shapes and chord lengths 

There are several axisymmetric geometric shapes used to represent bubbles. Two typical models 
(Clark & Turton 1988) are employed in this paper. 

(i) The ellipsoidal shape including spheroid is usually used to describe bubbles in gas liquid 
systems with parameters, R radius on the larger horizontal axes and c~ (0 < ~ ~< 1) a shape 
factor given by the ratio of  the minor (vertical) axis to the two major (horizontal) axes. 
This model is shown in figure l(a). 

(ii) The truncated ellipsoidal shape is used to represent bubbles in fluidized beds. These are 
termed "spherical cap"  bubbles (Werther 1974a) as shown in figure l(b). One more 
parameter  is needed to describe the bubble shape, namely the truncation coefficient K, 
often used as Q = x / l  - K  2. 

During measurement, the probe intersects a bubble with a chord length other than the largest 
vertical length, whatever probe is used and whatever bubble shape is assumed. A chord length 
pierced by the probe is determined by the horizontal distance r between the center of bubble and 
the probe tip, as well as bubble shape and size. Consider that bubbles rise in the bed system 
vertically. The chord length y pierced by the probe for an elliposidally shaped bubble is 

3' = 20~X/R2 -- r2 [1] 
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probe tip 

(a) ellipsoidally shaped bubble 

I_ _1 
~- K R - I  

(b) truncated ellipsoidally shaped bubble 

Figure 1. Bubble models represented by the ellipsoidal shape and the truncated ellipsoidal shape showing 
vertical chord length pierced by the probe tip. 

For a truncated ellipsoid, there are two cases: when 0 <~ r <<. KR, the chord length is 

y = ex/-R S -  r 2 + eQR [2a] 

and when KR <~ r <~ R, the chord length is the same as that for the ellipsoid, 

y = 2c~x/~ - r 2 [2b] 

A large number of bubbles with size distribution Pp(R) intersect the probe to produce a chord 
length distribution Pc(Y)- The chord lengths are known experimentally from a set of "pierced 
times" if the bubble rise velocity is known at the time of signal processing (Turton & Clark 1989). 

Distributions of  bubble sizes and chord lengths 

For a certain type of  size distribution of bubbles in the bed system, there is a corresponding size 
distribution of bubbles touching the probe and a chord length distribution. Assume that the probe 
tip is in the center of  the system with the effective radius of the system set at Rrnax (the largest 
horizontal radius of bubbles in the system). The ratio of the number of  bubbles with a specific 
radius R, which touch the probe, versus the number of  bubbles of the same size which are in the 
column is, 

P(R)  rcR 2 R 2 

Ps(R) 2 2 gRmax Rmax 
then 

R 2 

P(R) = g~m.~ P,(R) [3] 

where P(R)  is a probability of  bubbles intersected by the probe. This concept has been expressed 
by Clark & Turton (1988). 

The probability density function of the sizes of bubbles which are intersected by the probe, i.e. 
the normalized P(R) ,  is defined as, 

P(R)  [4] P p ( R )  - 

f P ( R ) d R  
oo 

Substituting [3] into [4], yields 

R2Ps(R) R2Ps(R) 
e p ( R )  = ~_ = [51 

f RzPs(R) dR the second moment Ps(R) 

Equation [5] indicates that the Pp(R) (the size distribution of  bubbles touching the probe) can 
be found from Ps(R) (the size distribution of  bubbles in the bed). When Pp(R) is known, P~(R) 
can be represented as, 

R2m,x R 2 f ~  Ps(R) = - - ~  P(R)  = --maxR 2 pp,tR~, ~ P(R)  dR [6] 
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Because ~5~ P~(R)dR = 1, then 

substituting [7] into [6], yields 

1 
P(R)  dR = 2 

f z Rm~x dR Pp(R) 
[7] 

PP(R)/R2 [8] 
P,(R)  = ~,~ Pp(R) 

J R2 dR 

The above equation provides a way to find the probability density function of bubbles in the 
bed system, when Pp(R) is known. Equations [5] and [8] demonstrate that measurement of bubbles 
favors bubbles of larger average size than the average size in the bed system. 

The conditional probability density function for a chord length y pierced by the probe from 
bubbles with a specific size R can be derived as the following, by using the geometrical probability 
approach. One needs to consider the probability that the chord length will lie between a value y 
and y + dy, given that the radius lies between r and dr. 

2r d~, 
Pc(Y/R) = ~ 5  [9] 

In this paper, all the bubbles are assumed to be geometrically similar and can be characterized 
by a single size parameter along with certain shape parameters. The probability of chord lengths 
occurring is readily deduced as follows for bubbles touching the probe with probability density 
function Pp(R), 

Pc(Y) = Pc(y/R)Pp(R)  dR [10] 
~2 

The value of [dr/dy[ can be found from [1] for the ellipsoidally shaped bubbles and from [2] for 
the truncated ellipsoidally shaped bubbles (Clark & Turton 1988). For the ellipsoidally shaped 
bubble model, the conditional probability density function can be written as, 

for 0 <~ y <~ 2c~QR 

else 

Y [lla] 
p c ( y / R ) -  2~2R 2 

Pc(y /R )=O [llb] 

and the distribution of chord lengths can be written as, 

Pp(R) dR [12] Pc(Y) = ./2~ 

For the truncated ellipsoidally shaped bubble model, the conditional probability density function 
of chord lengths can be written as, 

for O <. y ~ 2~QR 

and for 2~QR <~ y <~ ~(1 + Q)R 

else 

Y [13a] 
p c ( y / R ) -  2c~2R2 

2 
Pc(y/R) = ~ (Y - o~QR ) [13b] 

P c ( y / R )  = o [13c] 
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and the distribution of chord lengths can be written as, If [-.,./2.0 2 
Y Pp(R)dR + . ~ R 2 ( y - ~ Q R ) P , ( R ) d R  [14a] for 0 <~ y <~ o:QRma x Pc(Y) = ../2,0 2°t2RZ Jy/" +0) ot 

for y ) 2¢tQRm, X Pc(Y) = 2 - ¢tQR)Po(R) dR [14b] 
./~¢i + Q) ° ~ 2 R 2  ( y  

Equations [12] and [14] provide techniques for deducing the distribution of chord lengths for a 
given size distribution of bubbles touching the problem, Pp(R) and ultimately for a given size 
distribution of bubbles in the bed, P~(R). 

Two specific probability functions 

Gamma and Rayleigh probability funtions start from non-negative values and can often be fitted 
closely to the distributions of bubble sizes and chord lengths. The former probability function was 
used by Lim & Agarwal (1990) in fitting their measured data. The Rayleigh probability function 
has a similar shape to the Gamma function and is simpler in form. If the size distribution of bubbles 
in the bed is described by one of those distributions, one may seek the size distribution of bubbles 
touching the probe and the distribution of chord lengths. 

Case L Assume Ps(R), the size distribution of bubbles in the bed, is described by a Gamma 
function with adjustable parameters q and 2 as follows, 

j , q  
P s ( R ) = - - R q - l e  -:R (R >~O,q > 0 , 2  >O) [15] 

r(q) 

then, the size distribution of bubbles touching the probe can be readily found as, 

R 2 J'q R~_le_:. R 
R2ps(R) F(q) 2 q+z 

= - - 2) Rq+ 1 e-;.R [16] 
Pp(R) the second moment of Ps(R) (q + l)q/2 z F(q + 

Equation [16] indicates that Pp(R), the size distribution of bubbles touching the probe is also 
a Gamma probability function with the same 2, only the parameter q is changed to q + 2. 

For the ellipsoidally shaped bubbles, the distribution of chord lengths Pc(Y) can be written as, 

f f  Y 2q+22) Rq+l e -;R dR Pc(Y) = ./2~ 2ct2R2 F(q + 

y2~+ i o-:.Rioo yAq+ I(q __ 1) f~  
= . .  2~2F(q + 2) Ru- I + R q-2 e -:R dR 

2q (2/20t) q + I Yq e -(;'/2~)y 

= q(q + 1) r (q  + l) 

y2q+l(q - 1 )  f~  Rq_2e_;.Rd R 
~ 2~2q(q + l)F(q) J;./2, 

When q is an integer greater than zero, then 

2i (2/2ct)i+ I y i  e-i;./2,),. 
P~(y) = - -  - [17] 

~ q(q + 1) r ( i  + l) 

This means that Pc(Y) is the sum of a set of Gamma probability functions with weighting 
coefficients 2i/(q + l)q. 

Case II. When P~(R), the size distribution of bubbles in the bed, is described by a Rayleigh 
probability function with parameter # as follows, 

S , ( a ) = R  -,:/2,'- (R> .O ,#>O)  [18] # 2  e + 
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then, the size distribution of bubbles touching the probe Pp(R) can be written as, 

R 2 R e R2/2#2 
Pp(R) P- R3 = _ R2..2,2 [ 19] 

(?2 ; + ~ 2  

The distribution of chord lengths for ellipsoidally shaped bubbles can be written as, 

; f  Y R ~ Pp0') = e R2"2t'2 dR - Y e v2/Z(2':q02 [20] 
.',,2~ 2~2R2 2fl a (20¢/1) 2 

From [20], it is not difficult to find that the distribution of chord lengths is also a Rayleigh 
distribution with parameter 2cql. Therefore, it can be concluded that if the measured chord length 
data can be fitted by a Rayleigh probability function, the size distribution of bubbles in the bed 
can be quickly inferred as a Rayleigh distribution with the parameter which is the parameter of 
the Rayleigh probability function of chord lengths divided by 2c~. 

Figures 2 and 4 show size distributions of bubbles in the bed, Ps(R), which are Gamma and 
Rayleigh distributions with varying parameters Z, q and ft. Also shown are corresponding size 
distributions of bubbles touching the probe, Pp(R), and distributions of chord lengths, Pc0') for 
the ellipsoidally shaped bubbles with a shape factor c¢ = 0.6. Figure 3 shows that P~(R) is a Gamma 
probability function with 2 = 3 and q = 4, and related curves for Pp(R) and Pc(Y) for shape factor 

= 0.5 and 1, respectively. 
For truncated ellipsoidal shape bubbles, the integration required to evaluate PcO') becomes far 

more complex, due to segmentation of the probability, and an analytic solution is not offered here. 

Statistical analysis 

In this section the relationship of statistical parameters (mean and standard deviation) between 
chord lengths and bubble sizes is analyzed. The following techniques provide an approach for rapid 
translation from one distribution to the other. No specific form of the distribution is prescribed 
in this general case. 

The mean of the size distribution of bubbles touching the probe is defined a s  m p R ,  that is, 

f0 M p R  = RPp (R) dR [21] 

and the square of standard deviation of the size distribution of bubbles touching the probe is 
defined as a2pa, that is, 

;/ cd R = R2pp(R) dR - M~R [22] 

The mean of chord lengths Mcyc for ellipsoidally shaped bubbles can be written as, 

~ ( * y ( C  ~ ' d R ) d y  M:,,¢ = £, v P ~ ( y ) d Y = j o  w, , ,2~2~R2Pp(R)  

: ; o ) : ( C  2~R .12 2 ) 4~f0 .... 4~ \oo 2c~TR2Pp(R)dy d R = ~  R P p ( R ) d R = ~ M p R  [23] 

and the square of standard deviation of chord lengths e~y c c a n  be written as, 

f/ ) ¢~y~ = ),2p~(y) dy - -  (Mcye)  2 = y2 Y Pp(R) dR dy - -  (Mcve)2 ,,2~ 2~2R2 

;0z ( ;0 :aR :23 ) I z' = 2 R 2 P p ( R )  dy dR - -  (Mcye)  2 = 20{ 2 R2pp(R) dR - (Mcye)  2 
J0 

( I m  2 ) 2 2 ( ~ ) 2  = 2~ 2 R2pp(R)  dR - MpR q- 2C~ MpR -- MpR 
\do 

then 
2 v 2~2 2 2 2c~ O'pR -'l- ~ -  MpR O" cye [241 
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Figure 2. Size distributions in the bed represented by Gamma probability functions and corresponding 
size distributions of bubbles touching the probe and distributions of chord lengths• (a) P~(R) 
size distributions of bubbles in the bed---Gamma distributions; (b) Pp(R) size distributions of bubbles 
touching the probe~Gamma distributions; (c) Pc(y) distributions of chord lengths for ellipsoidally shaped 

bubbles--sum of Gamma distributions with weighting coefficients• 
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Figure 3. Size distribution in the bed represented by a Gamma probability function and corresponding 
size distribution of bubbles touching the probe and distributions of chord lengths for ellipsoidally shaped 

bubbles with different bubble factors. 

Equation [23] reveals that the mean of chord lengths, Mcye is directly proportional to the mean 
size of  the bubbles touching the probe, MpR which is expected for reasons of  geometric similarity. 
Equation [24] indicates that the square of  the standard deviation (variance) of  chord lengths, a~ye 
is proportional  to the square of  the standard deviation of sizes of  bubbles touching the probe, a~R 
and also to the square of  MpR. The coefficients in both equations are independent of  the distribution 
of chord lengths and the size distribution of bubbles touching the probe, and only related to the 
bubble shape factor e. 

Based on the same approach, the mean M~yt and the square of  standard deviation of chord 
lengths ~yt for truncated ellipsoidally shaped bubbles can be derived as follows, 

fO ~ I2aQRmaxytf Rmax t v'2aQ 2 Mcyt = yPc(y) dy = Y Pp(R) dR + e2R2 ,10 \dy/2:~Q 25{2R2 fl >'cql + Q) 

x ( y - e Q R ) P p ( R ) d R ) d y  + f ~(l+O)u ..... { fR .... 2 
fl 2~Rmax y~jy~:(l+Q)~2~e2(~) -c~QR)Pp(R)dR)dy 

=I2~QRmaxylIRmax40~QR__3y ) i:~('+Q)Rmax (IR 2 .... 

Oo \0,,/2~o ~-~2~ Pp(R) dR dy + y . dO \dv/~(l + Q) ~2R2 

x (y -- o~QR)Pp(R) d R )  dy 

=f f ( f2~QR4~QRy--3y2PP(R)dy)  2~2R2 

f0 (f ) + o~2R 2 0,2 _ o~QRy)Pp(R) dy dR 
\do 

then 

and 

Mcyt = (~ (1  + Q)3 _ ~Q(1 + Q)2)MpR 

f 0  ~ 
acyt: = y2p~(y) dR - Mcyt 

[251 



"7 

I=1 
o 
o 

1.0 

RELATIONSHIPS BETWEEN C H O R D  L E N G T H S  A N D  BUBBLE SIZES 

(a) 

0.8 

0.6 

0.4 

0.2 

0.0 

1.0 

- -  ~ = 0.6, l.t = 0.8 

- - - - -  t~ = 0.6, l,t = 1.0 

/ f ~  ........... c t=O.6 ,  g =  1.2 

/ ./- ........~.. . . . . .  ~ = 0.6, l.t = 1.4 

~ ~ ~ ~ . = =  : . ~  : . ~ . . ~  . . . .  
t i i J i 

0 1 2 3 4 5 

b u b b l e  s ize  R [cm] 

( b )  

1081 

M 

O 

O 

0.8 

0.6 

0.4 

0.2 

0.0 

.-.~.. 

i i i i i 

1 2 3 4 5 

bubble size R [cm] 

(c) 
1.0 

v'-" 

O 

0.8 

0.6 

0.4 

0.2 

0.0 
.;. - , , _ . _ ~  : =  . ~ .  . . : :. . . ... . . . . .  ~ . . . . . .  

i i i i f 

0 1 2 3 4 5 6 

chord length y [cm] 

Figure 4. Size distributions in the bed represented by Rayleigh probability functions and corresponding 
size distributions of bubbles touching the probe and distributions of chord lengths. (a) Ps(R) size 
distributions of bubbles in the bed--Rayleigh distributions; (b) Pp(R) size distributions of bubbles 
touching the probe; (c) P,(y) distributions of chord lengths for ellipsoidally shaped bubbles--Rayleigh 

distributions. 
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Figure 5. Distributions of bubble sizes and chord lengths simulated for a given size distribution of bubbles 
in the bed--the Gamma probability function with parameters q = 4, 2 = 2.8 and bubble shape factor 

= 0.6 for either ellipsoidally shaped bubbles or truncated ellipsoidally shaped bubbles with the 
truncation coefficient K = 0.8 (a) Size distribution of bubbles in the bed; (b) size distribution of bubbles 
touching the probe; (c) distribution of chord lengths of ellipsoidally shaped bubbles; (d) distribution of 

chord lengths of truncated ellipsoidally shaped bubbles. 

thus, 

O.~yt=(l~2(1 +Q)4_~cdQ(1 +Q)3 2_2,-,4,_2 - ~ ~ )opR + (½~2(1 + Q)4 _ ~ 2 Q (  1 + Q)3 

2_ 2,~4 ( ~ ( 1  + Q)3 ~Q(1 + Q)2)2)MpR [26] 

Equa t ions  [25] and [26] are ana logous  to [23] and [24]. The coefficients in [25] and [26] are also 
related to the t runca t ion  coefficient K or  Q used to describe bubble  shape, besides being related 
to the ellipsoidal shape fac tor  ~. 

The  significance of  those equat ions  in practice is that  when chord lengths are measured,  the mean  
chord  length Mcy ~ and s tandard  deviat ion 0~cy e for ellipsoidal shape bubbles  or  the mean  chord  length 
Mcyt and s tandard  deviat ion ~cyt for  t runcated ellipsoidal shape bubbles  can be found based on the 
measured  data,  then, the mean  MpR and s tandard  deviat ion ~pR of  bubbles  touchings the p robe  are 
readily found by using [23] and [24] or  [25] and [26]. It  is wor th  ment ioning that  [25] equals [23] 
and [26] equals [24], respectively, when the t runcated coefficient K equals 0, that  is Q is 1, 
represent ing no t runcat ion.  Thus,  [25] and [26] are a more  general fo rm for  the bubbles.  

Simulation 
A Monte -Car lo  s imulat ion me thod  was used to generate  bubbles  synthetically a round  an 

imaginary  probe.  Two  sets o f  r a n d o m  numbers  (10,000 bubbles  in the bed system) of  bubble  sizes 
R were generated based on specified funct ions for  Ps(R) which were a G a m m a  distr ibution with 
pa ramete r s  q -- 4 and  2 = 2.8, and a Rayleigh distr ibution with pa rame te r  p = 1.4, respectively. 
Bubbles were uni formly  dis tr ibuted through the bed. Bubble shape factor  ~ was 0.6 for either 
ellipsoidally shaped bubbles  or  t runcated  ellipsoidally shaped bubbles.  The  t runcat ion  coefficient 
o f  t runcated ellipsoidally shaped bubbles,  K was 0.8, i.e. Q = 0.6. The  generated size dis tr ibut ions 
o f  bubbles  in the bed and touching the p robe  and distr ibut ions of  chord  lengths pierced by the 
imaginary  probe,  which were calculated by using [1] or [2], are shown in figures 5 and 6. Means  
and s tandard  deviat ions o f  bubbles  in the bed and touching the p robe  and o f  chord  lengths in 
s imulat ion are listed in table 1 a long with their theoretical  values. Means  and s tandard  deviat ions 
o f  bubbles  touching the p robe  calculated f rom [23] to [26] are listed in table 2. 

In table 1 theoretical  values were found f rom [15], [16] and [17] for Ps(R) given by a G a m m a  
distr ibut ion with pa ramete r s  2 = 2.8, q = 4, and f rom [18], [19] and [20] for Ps(R) given by a 
Rayleigh dis tr ibut ion with p a r a m e t e r  p = 1.4. The  bubble  shape factor  ~ is 0.6 for  both  ellipsoidally 
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Figure 6. Distributions of  bubble sizes and chord lengths simulated for a given size distribution of bubbles 
in the bed- - the  Rayleigh probability function with parameter  # = 1.4 and bubble shape factor ~ = 0.6 
for either ellipsoidally shaped bubbles or truncated ellipsoidally shaped bubbles with the truncation 
coefficient K = 0.8. The curves refer to the illusrated example toward the end of  the paper. (a) Size 
distribution of  bubbles in the bed; (b) size distribution of  bubbles touching the proble; (c) distribution 
of  chord lengths of  ellipsoidally shaped bubbles; (d) distribution of  chord lengths of  truncated ellipsoidally 

shaped bubbles. 

shaped bubbles and truncated ellipsoidally shaped bubbles with the truncation coefficient K = 0.8. 
Table 1 shows that the simulation data are very close to the theoretical data. F rom simulation data, 
it is easy to find that relationships of  means and standard deviations between bubble sizes and chord 
lengths are in concord with [23] to [26]. 

In order to verify [23] to [26], means and standard deviations of  sizes of  bubbles touching the 
probe were calculated from those equations. We can see these values are very close to their 
theoretical or simulation values as shown in table 2. 

Table 1. Means  and standard deviations of sizes of  bubbles with shape factor ct = 0.6 in the bed and touching the probe, 
and of  chord lengths for both ellipsoidally shaped bubbles and truncated ellipsoidally shaped bubbles with the truncation 
coefficient K = 0.8, based on Ps(R) is a G a m m a  distribution with parameters 2 = 2.8 and q = 4, and a Rayleigh distribution 

with parameter /~ = 1.4, respectively 

theoetical simulation Relative theoretical simulation Relative 
value value error value value error 

G a m m a  distribution 1.4290 1.4330 0.28% 2.1428 2.1031 - 1.85% 
Rayleigh distribution 1.7546 1.7631 0.48% 2.6310 2.6236 --0.28% 

Mcyo Mcyo Mcyt M~, 
theoretical simulation Relative theoretical simulation Relative 

value value error value value error 

G a m m a  distribution 1.7142 1.7102 - 0 . 2 3 %  1.5360 1.5266 --0.61% 
Rayleigh distribution 2.1056 2.1153 0.46% 1.8859 1.8882 0.12% 

0" s O" s O'pR O'pR 
theoretical simulation Relative theoretical simulation Relative 

value value error value value error 

G a m m a  distribution 0.7143 0.7140 - 0 . 0 3 %  0.8748 0.9085 3.85% 
Rayleigh distribution 0.9172 0.9258 0.94% 0.9553 0.9608 0.58% 

O'Cy e O'cy e O'cy t O'cy t 
theoretical simulation Relative theoretical simulation Relative 

value value error value value error 

G a m m a  distribution 0.9584 1.0025 4.60% 0.7962 0.8301 5.35% 
Rayleigh distribution 1.1006 1.1138 1.20% 0.9062 0.9118 0.62% 
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Table 2. Means and standard deviations of size distributions of bubbles touching the probe which are found from means 
and standard deviations of chord lengths for either ellipsoidally shaped bubbles by using [23] and [24] or truncated 

ellipsoidally shaped bubbles by using [25] and [26] 

MpR MpR 
calculated Relative Relative ca l cu la t ed  Relative Relative 

from error to error to from error to error to 
[ 2 3 ]  theore t i ca l  simulation [ 2 5 ]  theore t i ca l  simulation 

Gamma distribution 2.1378 - 0.23 % 1.65 % 2.1297 - 0.61% 1.26% 
Rayleigh distribution 2.6441 0.49% 0.78% 2.6342 0. I2% 0.40% 

O-pR O-pR 
calculated Relative Relative ca l cu l a t ed  Relative Relative 

from error to error to from error to error to 
[ 2 4 ]  theoretical simulation [ 2 6 ]  theoretical simulation 

Gamma distribution 0.9424 7.72% 3.73% 0.9320 6.54% 2.59% 
Rayleigh distribution 0.9727 1.82% 1.24% 0.9644 0.95% 0.37% 

Translation .from distribution of chord lengths to distributions of bubble sizes 

In practice, the true bubble size distribution is never (or rarely ever) known. However,  the 
distribution o f  chord lengths can be measured in practice. The mean and s tandard deviation of  
Pp(R),  size distribution o f  bubbles touching the probe is readily found from [23] to [26]. However,  
deducing the size distribution o f  bubbles touching the probe, Pp(R) from the distribution of  chord 
lengths, Pp(Y) is very important .  The following analysis is based on the ellipsoidally shaped bubble 
model. 

Assume Pc(Y) and Pp(R) are cont inuous  probabil i ty functions, differentiate both sides o f  [12] 
to yield, 

; f  1 Pp(R) dR - + Pp(y/2~) 
P'~(y) = ,,2:, 20~2R 2 

and multiply both  sides by y to yield, 

I f  Y Pp(R) dR 1 Pp (y/2~) YPc(Y ) 2ot2R 2 ot 
. , , 2 o ~  

The first term in the right side o f  the above equat ion equals Pc(Y) identically, so that 

Pp(y /2~) = ct(P~(y) - yPg(Y )) 

let R = y/2e, so that 

Pp(R) = ~(Pe(2~R) - 2~RP;(2~R)) [27] 

The impor tance  o f  [27] is to translate the distribution o f  chord lengths to the size distribution 
o f  bubbles touching the probe in analytical form. The size distribution of  bubbles in the bed system 
can then be readily found by using [8]. In other  words,  when the data  o f  chord lengths measured 
by a probe are available, a certain type o f  probabil i ty function may be employed to fit the data 
to obtain Pc(Y), and then [27] is used to find Pp(R),  at last, Ps(R) can be found by using [8]. An 
illustrative example is given below. 

Illustrative example. Take the simulation data o f  chord lengths in figure 6(c) as measured data, 
the curve fitting technique, i.e. least squares best fit method is used to fit the data  with a Rayleigh 
probabil i ty function. The paramete r / J  o f  the fitting Rayleigh function is found to be 1.61 [solid 
line curve in figure 6(c)], which is close to the original theoretical value !.68 [dashed line curve in 
figure 6(c)]. Therefore,  the fitting curve P~(Y), the distribution o f  chord lengths can be written as, 

Y e-J,2/2 x 1.612 
Pc(Y) = 1.612 
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then [27] is used to find the size distribution of bubbles touching the probe Pp(R) from this /'cO') 
and P~O'), 

/ 2 ~ R  (2=R)~,, x , 612 (1 .~--~ 2°tR2(2ctR) e-~2~R)2/2×16'2"~ Pp(R) = ~ L T T ~  e-  "- -2c tR  e -(2=R)2/2 x 1"6'2 !.612 2 - x - ~ 2  j j  

R 3 
e -  R2/2 x (i/61/2=) 2 

- 2 x (1.61/2~) 4 

Substituting ~ = 0.6 into this equation, yields, 

R 3 
P p ( R )  -- 2 x 1.344 e-R2~2 x 1.342 

Pp (R)  is plotted with solid line in figure 6(b), which is very close to the original size distribution 
of bubbles touching the probe, R 3 e -m/2 × 142/2 × 1.44, the dashed line in the same figure. The mean 
and standard deivation of  Pp (R)  are 2.5192 and 0.9144, respectiely, very close to the theoretical 
and simulation values in table 1. 

The size distribution of bubbles in the bed, P,(R) can be found by using [8], that is, 

1 R 3 
R 2 2 × 1.344e-R2/2× 

1.342 

R R2/2 x 1.342 

- 1 .~-42 e P~(R) = f ,~ 1 R3 e-m/2 x 1.342 

J0 /~22 x ]7.344 

Ps(R) is plotted in with solid line figure 6[a), which is very close to the original size distribution 
of  bubbles in the bed, R e R2/2 × 1.42/1.42, the dashed line in figure 6(a). The mean and standard 
deviation of Ps(R) are 1.6794 and 0.8779, respectively, very close to the theoretical and simulation 
values in table 1. 

For the truncated ellipsoidally shaped bubble model, [27] cannot be used directly unless the 
ellipsoidally shaped bubble is employed as an approximation of the truncated ellipsoidally shaped 
model. The determination of the shape factor of the ellipsoidally shape bubble model for 
approximating the truncated ellipsoidally shaped bubble model, is based on the fact that both 
models have the same average bubble size for a set of  chord lengths, that is, 

4~ap p McY = c~(1 -1- Q)3 _ c~Q(I + Q)2 Mcy 

so that, 

~app = ¼(2~ + 3~Q - eQ3) [281 

When 0{ap p is known, [27] can be used to find the bubble size distributions. For instance, take the 
simulation data of chord lengths in figure 6(d) as measured data, where the bubble shape factor 

is 0.6 and the truncated coefficient Q is 0.6, and substitute e and Q into [28], so that the 
approximate shape factor is 0.5376. Thus, Pc(Y) is found with the same technique described above 
to be y e v2/2 × 1"552/2 X 1 . 5 5 2 ,  and is illustrated in figure 6(d). Equations [27] and [8] are used to find 
size distributions P p ( R )  and Ps(R), respectively, that is, 

R 3 
P p ( R )  -- 2 x 1.444 e R2/2 × E442 

R 
(R) T T ~  _2 Ps = e R /2 x 1.442 

which are illustrated in figure 6(a) and (b). Results show that Ps(R) and Pp(R) are in good 
agreement with their original distributions. 

The above example shows that the approach is feasible and powerful. The results are shown to 
agree with the forward transform. Generally, the accuracy of the method relies on the measured 
data and selection of a probability function to fit the data. 

IJMF 21 6 ~ H  
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C O N C L U S I O N S  

The relationships between distributions of bubble sizes and distributions of chord lengths are 
discussed extensively in this paper. The analyses indicate that means and standard deviations of 
chord lengths and bubble sizes are related to each other unequivocally and are not dependent on 
the nature of their distributions. The quantitative relationships between the mean and standard 
deviation of chord lengths and mean and standard deviation of bubble sizes can be described by 
[23] and [24] for ellipsoidally shaped bubbles and by [25] and [26] for truncated ellipsoidally shaped 
bubbles. In measurement, the probe favors a larger average size of bubbles than the average size 
in the bed system. Those analyses are verified by the simulation. The simulation and calculated 
results indicate that the develoepd analytic approach for transforming the distribution of chord 
lengths measured by the probe to the size distributions of bubbles touching the probe and in the 
bed is correct, feasible and powerful. The approach provided for the first time is in a closed form 
and can quickly and effectively process measured data. 
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